Improving Significant Wave Height Prediction Using a Neuro-Fuzzy Approach and Marine Predators Algorithm

نویسندگان

چکیده

This study investigates the ability of a new hybrid neuro-fuzzy model by combining (ANFIS) approach with marine predators’ algorithm (MPA) in predicting short-term (from 1 h ahead to day ahead) significant wave heights. Data from two stations, Cairns and Palm Beach buoy, were used assessing considered methods. The ANFIS-MPA was compared other methods, ANFIS genetic (ANFIS-GA) particle swarm optimization (ANFIS-PSO), height for multiple lead times ranging day. multivariate adaptive regression spline investigated deciding best input prediction models. generally offered better accuracy than models both stations. It improved ANFIS-PSO ANFIS-GA 8.3% 11.2% root mean square errors time test period.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach

Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...

متن کامل

Improving the COCOMO model using a neuro-fuzzy approach

Accurate software development cost estimation is important for effective project management such as budgeting, project planning and control. So far, no model has proved to be successful at effectively and consistently predicting software development cost. A novel neuro-fuzzy Constructive Cost Model (COCOMO) is proposed for software cost estimation. This model carries some of the desirable featu...

متن کامل

adaptive online traffic flow prediction using aggregated neuro fuzzy approach

short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . these results made the hybrid tools and approaches a more common method for ...

متن کامل

A neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country

Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...

متن کامل

Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements

In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Marine Science and Engineering

سال: 2023

ISSN: ['2077-1312']

DOI: https://doi.org/10.3390/jmse11061163